
fireLib

User Manual

and

Technical Reference

October 1996

Collin D. Bevins
Systems for Environmental Management

fireLib User Manual and Technical Reference

© 1996 by Collin D. Bevins

Release 1, October 1996

This research was supported in part by funds provided by the Intermountain Research Station,
Forest Service, U.S. Department of Agriculture. Additional support was provided by Systems
for Environmental Management, a Montana nonprofit research organization.

fireLib User Manual October 1996

Page 1

0. Introduction

fireLib is a C function library for predicting the spread rate and intensity of free-
burning wildfires. It is derived directly from the BEHAVE (Andrews 1986) fire behavior
algorithms for predicting fire spread in two dimensions, but is optimized for highly iterative
applications such as cell- or wave-based fire growth simulation.

The BEHAVE System was developed in the early 1980's to calculate a few (less than
50) fire behavior projections at a time and display the results in a small table. In the past
decade greater attention has been given to spatially explicit fire growth modeling where fire is
simulated within a large array of terrain, fuel, and weather conditions that vary spatially and
temporally. Such growth models make highly repetitive computations of fire spread from
each source point to multiple destination points; a process that is repeated for each source
point in the map and for each time step in the simulation. This quickly results in millions of
iterations and provides an opportunity to realize significant benefits from a library of
optimally encapsulated fire behavior functions.

The fireLib library was developed to give fire growth modellers a simple, common,
and optimized application programming interface (API) to use in their applications. It is
written entirely in ANSI standard C and also compiles under a wide range of Kernighan &
Ritchie (pre-ANSI standard) C and C++ compilers on a variety of personal computers and
work stations.

While fireLib contains 13 functions, as few as 4 functions are required to create a
simple yet efficient and functional fire growth simulator. The example simulator may serve
as a foundation for more realistic applications.

This paper is both a user manual and a technical reference to fireLib. We assume the
reader is familiar with the basic concepts of fuel models and fire behavior modeling and make
no attempt to teach these concepts. Readers are furthermore cautioned to understand the
assumptions and limitations (summarized by Andrews 1986) of the Rothermel (1972) fire
model, the BEHAVE System, and all models derived from them, including the fireLib API.

fireLib User Manual October 1996

Page 2

1. The Fire Behavior Calculation Pipeline

Calculation of fire spread and intensity may be represented as a pipeline through
which sets of input parameters are introduced at four stages to calculate succeeding fire
behavior variables:

Stage Stage Inputs Stage Outputs

1:
Fuel

Fuel bed and fuel particle
characteristics

Characteristic fuel area, load, etc; fuel bed bulk
density; fire residence time.

2:
Moisture

Fuel moisture No-wind, no-slope spread rate; reaction intensity;
heat per unit area.; live fuel extinction moisture.

3:
Wind

Wind speed & direction,
slope & aspect

Maximum spread rate; direction of maximum
spread.

4:
Direction

Spread azimuth Spread rate; fireline intensity; flame length; scorch
height (all in the direction of interest)

While fuel bed characteristics generally vary throughout the landscape, they are
usually considered invariant within the time frame of a fire behavior growth simulation. A
significant improvement in fire modelling performance is therefore realized by calculating and
storing variables that are fuel bed dependent intermediate for each fuel model. In the first
stage of the pipeline variables such as characteristic surface area, loading, and residence time
are derived. The fireLib Fire_FuelCombustion() function performs the first stage
computations.

Fuel moisture, wind speed, and wind direction are more temporal. Because the
Rothermel (1972) fire model uses fuel moisture to determine the heat sink term in deriving
fire reaction intensity and the no-wind no-slope spread rate, fuel moisture is introduced in the
second stage of the pipeline. The fireLib Fire_SpreadNoWindNoSlope() function
performs the second stage computations.

Rothermel (1972) modelled the effect of slope on fire behavior using the same
mechanism as for wind; in fact he calls the combined effect of slope and wind the “effective
windspeed”. Thus, although slope and aspect are invariant over time, they are introduced into
the pipeline at stage 3 along with wind speed and wind direction. In the third stage the
maximum spread rate and direction of maximum spread are calculated by the fireLib
Fire_SpreadWindSlopeMax() function.

fireLib User Manual October 1996

Page 3

In Stage 4, fire behavior in any compass direction is determined using the elliptical
growth model developed by Anderson (1983) and employed by BEHAVE (Andrews 1986).
The four vector-dependent fire behavior outputs of spread rate, Byram’s fireline intensity,
flame length, and scorch height are derived by the fireLib Fire_SpreadAtAzimuth()
function.

Significant improvement in fire model performance is realized by partitioning the fire
behavior computations into these four stages and proceeding only through those stages
necessary to arrive at new behavior estimates.

After optimizing the fire behavior algorithms from BEHAVE, the following proportion
of time is spent in a single iteration through each stage of the pipeline:

Stage Computations Time (%)

1 Fuel bed and combustion intermediates 82

2 No-wind, no-slope spread rate 2

3 Maximum spread rate & direction of maximum spread 14

4 Spread rate, intensity, flame length, & scorch height in any direction 2

fireLib User Manual October 1996

Page 4

2. Fuel Catalog, Fuel Model, and Fuel Particle Objects

The fireLib API employs the concepts of a fuel catalog, a fuel model, and a fuel
particle. A fireLib application may contain one or more fuel catalogs. A fuel catalog is a
collection of zero or more fire behavior fuel models, and each fuel model contains zero or
more fuel particles.

2.1 Fuel Catalog Objects and Methods

A fuel catalog is merely a collection of fuel models. In addition to fuel data, it serves
as a container for state information on function status, error messages, and use of the optional
flame length table. Each fuel catalog is identified by a handle (or pointer) returned by one of
the fuel catalog creation functions. All other functions require this handle as an input
argument.

The Fire_FuelCatalogCreate() function creates a new fuel catalog. The catalog
name and maximum number of fuel models it may contain are specified as function
arguments. The fuel models are subsequently defined for the catalog by the
Fire_FuelModelCreate() function (see below).

The Fire_FuelCatalogCreateStandard() function also creates a new fuel
catalog with the specified name and fuel model capacity. It also automatically pre-defines 14
fuel models; a no-fuel model and the 13 standard fire behavior models.

The Fire_FuelCatalogDestroy() function removes the specified fuel catalog
and all its fuel models from program memory.

2.2 Fuel Model Objects and Methods

A fuel model describes the fuel particles and fuel bed arrangement for a stylized or
representative fuel condition. The fuel model object also serves as a container for all the
current fire environment, fuel bed, and fire behavior state information relating to the fuel
model.

Each fuel model within a catalog is identified by a unique integer number. This
number may range from zero to the maximum number of models allowed in the catalog. All
fireLib fire behavior functions require the fuel catalog handle and the fuel model number as
input arguments.

The Fire_FuelModelCreate() function creates a new fuel model. The catalog
handle, model number, name, description, maximum number of fuel particles allowed, fuel
bed depth, and dead fuel extinction moisture content are specified as function arguments.

fireLib User Manual October 1996

Page 5

This function will also re-define any fuel model with the same model number in the catalog.
Fuel particles are subsequently added to the fuel model by the Fire_FuelParticleAdd()
function (see below).

fireLib User Manual October 1996

Page 6

The Fire_FuelModelDestroy()function removes a fuel model and its fuel
particles from its catalog.

It is important to note that because each fuel catalog is a separate object, there is not
necessarily any correspondence between fuel models with the same numbers in different
catalogs. For example, fuel model 6 in one fuel catalog may be entirely different from fuel
model 6 in another catalog, depending on how the fuel models were created.

2.3 Fuel Particle Objects and Methods

A fuel particle is a specific type of fuel component found in a fuel model. Examples
of fuel particles include needle, grass, or foliage litter; standing grass; dead and down twigs
and branches of various diameters; and live stems and foliage.

 The Fire_FuelParticleAdd() function adds new fuel particles to a fuel model
within a catalog. Function arguments include the particle life code (dead, live herbaceous, or
live woody stem), surface-area-to-volume ratio, loading, particle density, low heat of
combustion, and total and effective silica content. Each fuel model may contain from zero to
the maximum number of fuel particles specified when the fuel model was created.

Fuel particles are assigned an index number (starting with 0) as they are added to the
fuel model. Programmers use the fuel particle property macros (section 5.2) to access or
update particle characteristics. There is no function for removing fuel particles from a fuel
model.

2.4 Flame Length Table

The flame length table is an optional object belonging to the fuel catalog.

The Fire_SpreadAtAzimuth() and Fire_FlameScorch() functions calculate
flame length using a power function of the fireline intensity. The power function can
significantly impact program performance, and it is generally more efficient to look up the
flame length from a pre-calculated table given the fireline intensity. Since flame length is
strictly an output variable (it is never used to derive any other variable), it is usually not
necessary to calculate it to full floating point precision anyway.

The Fire_FlameLengthTable() builds a flame length look up table that is
subsequently used by Fire_SpreadAtAzimuth() and Fire_FlameScorch() instead of
direct computation. The function takes as arguments the number of flame length classes and
the size of each flame length class (e.g., 1 foot), so the user has control over the table
precision.

fireLib User Manual October 1996

Page 7

3. Error Handling

3.1 Return Codes and Error Messages

Most fireLib functions return a status code of FIRE_STATUS_OK on success or
FIRE_STATUS_ERROR on failure. The two exceptions are the fuel catalog creation
functions Fire_FuelCatalogCreate() and Fire_FuelCatalogCreateStandard(),
which return a catalog handle on success or NULL on failure.

In the event of a failure, all fireLib functions write an error message to the catalog’s
error message buffer. The programmer may access and display the message using the macro:

error = FuelCat_Error(catalog);

The error message remains intact until overwritten by a subsequent message. The return
status of the most recent fireLib function is also available via the macro:

status = FuelCat_Status(catalog);

Error messages issued by each fireLib function are discussed in the Function Reference.

3.2 catalogcatalog Handle Validation

All fireLib functions also validate the catalog handle argument to ensure it is not
NULL and that it contains a valid magic cookie. The validation is performed within the
standard C assert() function, which prints a short (compiler-dependent) message to
stderr and aborts the program with a core dump.

If you are satisfied that your program is not passing around invalid catalog handles,
you may circumvent the assert() test by the standard C mechanism of defining the macro
NDEBUG. This may slightly improve your application performance.

fireLib User Manual October 1996

Page 8

4. Accessing Object Properties Using Macros

fireLib functions return a success or failure code rather than computation results.
Access to catalog, fuel model, and fuel particle properties, including all input variables, stored
intermediates, and all fire behavior outputs, is available to the programmer via C macros.
These macros are used like C function calls to access or update current object properties.

A property macro consists of the “Fuel_” prefix followed by a descriptive label and
a 1, 2, or 3 arguments. The first argument is always the catalog handle. If two or more
arguments, the second is always the fuel modelNumber. If three or more arguments, the
third argument is either the fuel particle index, life class index, or moisture class index.

The following symbols are used to represent the property macro argument types:

Macro Arguments

Argument Description Allowable Values

c Fuel catalog handle

m Fuel model number 0 - maxModels

p Fuel particle index 0 - maxParticles

x Fuel moisture content by size class FIRE_MCLASS_1HR
FIRE_MCLASS_10HR
FIRE_MCLASS_100HR
FIRE_MCLASS_1000HR
FIRE_MCLASS_HERB
FIRE_MCLASS_WOOD

l Fuel particle life class FIRE_LIFE_DEAD
FIRE_LIFE_LIVE

For example, the macro Fuel_Load(c,m,p) refers to the loading of fuel particle p
in fuel model m of fuel catalog c.

The following tables document the property macro names, arguments, units of
measure, and whether the property is input by the user (I) or derived by the function (D).

fireLib User Manual October 1996

Page 9

4.1 Fuel Catalog Property Macros

Macros for accessing fuel catalog properties require one argument, the catalog,
which must be a valid FuelCatalogPtr handle. A common use of a fuel catalog macro is to
get the current error message:

message = FuelCat_Error(catalog);

Fuel Catalog Property Macros

Macro Description Units I/D

FuelCat_Error(c) Pointer to current error message buffer. none D

FuelCat_FlameArray(c) Pointer to allocated flame length table.
NULL if no flame length table.

none I

FuelCat_FlameClasses(c) Number of classes in flame length table.
(Zero if no flame length table)

none I

FuelCat_FlameStep(c) Size of each flame length class. feet I

FuelCat_MagicCookie(c) Fuel catalog magic cookie. none D

FuelCat_MaxModels(c) Maximum allowable fuel model number none I

FuelCat_ModelArray(c) Pointer to allocated fuel model object array. none D

FuelCat_Name(c) Pointer to allocated fuel catalog name. none I

FuelCat_Status(c) Most recent fireLib function return code:
FIRE_STATUS_OK or FIRE_STATUS_ERROR

none D

fireLib User Manual October 1996

Page 10

4.2 Fuel Model Property Macros

Macros for accessing fuel model properties require two arguments; catalog, and
modelNumber. The catalog argument must be a valid FuelCatalogPtr handle and the
modelNumber argument is a fuel model number. To access, for example, the the light
logging slash (fuel model 11) fuel bed depth:

depth = Fuel_Depth(catalog,11);

Fuel Model Property Macros

Macro Description Units I/D

Fuel_CombustionFlag(c,m) Equals 1 if Fire_FuelCombustion() has
been run for this model. Equals 0 if
fuel model has been updated.

[0..1] D

Fuel_Depth(c,m) Fuel bed depth feet I

Fuel_Desc(c,m) Pointer to allocated fuel model
description

none I

Fuel_MaxParticles(c,m) Maximum particles allowed none I

Fuel_Mext(c,m) Extinction moisture content lb water / lb fuel I

Fuel_Model(c,m) Model number none I

Fuel_ModelPtr(c,m) Pointer to allocated fuel model object none D

Fuel_Name(c,m) Pointer to allocated model name none I

Fuel_ParticleArray(c,m) Pointer to allocated particle array none D

Fuel_Particles(c,m) Number of defined particles [0..maxParticles] D

Fuel_SpreadAdjustment(c,m) Spread rate adjustment factor none I

fireLib User Manual October 1996

Page 11

4.3 Fuel Particle Property Macros

Macros for accessing fuel particle properties require three arguments; catalog,
modelNumber, and the particle index. The catalog argument must be a valid
FuelCatalogPtr handle, the modelNumber argument is a fuel model number. Particle
indexes start at 0 and correspond to the order in which Fire_FuelParticleAdd() was
called. To access, for example, the light logging slash (fuel model 11) 10-hour fuel load:

load = Fuel_Load(catalog,11,1);

Fuel Particle Property Macros

Macro Description Units I/D

Fuel_AreaWtg(c,m,p) Surface area derived wtg factor none D

Fuel_Density(c,m,p) Fuel particle density lbs fuel / cu ft fuel I

Fuel_Heat(c,m,p) Low heat of combustion BTU / lb fuel I

Fuel_Live(c,m,p) Fuel life code: FUEL_LIFE_DEAD or
FUEL_LIFE_LIVE

[0..1] I

Fuel_Load(c,m,p) Loading lb fuel / sq ft bed I

Fuel_Moisture(c,m,p) Moisture content lb water / lb fuel I

Fuel_ParticlePtr(c,m,p) Pointer to fuel particle object none D

Fuel_Savr(c,m,p) Surface area-to-volume ratio sq ft fuel / cu ft fuel I

Fuel_SiEffective(c,m,p) Effective silica content lb silica / lb fuel I

Fuel_SigmaFactor(c,m,p) exp(-138./characteristic sa-vol) sq ft fuel / cu ft fuel D

Fuel_SiTotal(c,m,p) Total silica content lb silica / lb fuel I

Fuel_SizeAreaWtg(c,m,p) Size class surface area wtg factor none D

Fuel_SizeClass(c,m,p) Surface area-to-volume size class
0 > 1200 sq ft / cu ft
1 > 192 2 > 96 3 > 48 4 >16 5 >
0

[0..5] D

Fuel_SurfaceArea(c,m,p) Total surface area sq ft fuel / sq ft bed D

Fuel_Type(c,m,p) Fuel particle type code:
FIRE_TYPE_DEAD
FIRE_TYPE_HERB
FIRE_TYPE_WOOD

[0..2] I

fireLib User Manual October 1996

Page 12

4.4 Fuel Model Environment Property Macros

Macros for accessing fuel model environment properties require two arguments;
catalog and modelNumber. The catalog argument must be a valid FuelCatalogPtr
handle and the modelNumber argument is a fuel model number. To access, for example,
the current aspect setting for the light logging slash model (fuel model 11):

aspect = Fuel_Aspect(catalog,11);

The macro to access environmental fuel moisture requires a third argument, mclass,
which indicates which of four dead fuel classes or two live fuel classes to access. To access
the live herbaceous fuel moisture content:

herbMoisture = Fuel_EnvMoisture(catalog,11,FIRE_MCLASS_HERB);

Fuel Model Environmental Property Macros

Macro Description Units I/D

Fuel_Aspect(c,m) Terrain aspect degrees clockwise from
north

I

Fuel_EnvMoisture(c,m,x) Environmental moisture content where x
is one of the macro constants:
FIRE_MCLASS_1HR (dead < 0.25")
FIRE_MCLASS_10HR (dead < 1.0")
FIRE_MCLASS_100HR (dead < 3.0")
FIRE_MCLASS_1000HR (dead

>
3.0")

FIRE_MCLASS_HERB (live)
FIRE_MCLASS_WOOD (live)

lb water / lb fuel I

Fuel_Slope(c,m) Terrain slope rise / reach I

Fuel_WindDir(c,m) Direction of wind heading degrees clockwise from
north

I

Fuel_WindSpeed(c,m) Wind speed feet / min D

fireLib User Manual October 1996

Page 13

4.5 Fuel Model Fire Behavior Property Macros

Macros for accessing fuel model fire behavior properties require two arguments;
catalog and modelNumber. The catalog argument must be a valid FuelCatalogPtr
handle and the modelNumber argument is a fuel model number. To access, for example,
the spread rate at the current azimuth for the light logging slash model (fuel model 11):

spread = Fuel_SpreadAny(catalog,11);

Fuel Model Fire Behavior Property Macros

Macro Description Units I/D

Fuel_AzimuthAny(c,m) Current fire spread azimuth degrees clockwise from north I

Fuel_AzimuthMax(c,m) Azimuth of maximum fire spread degrees clockwise from north D

Fuel_ByramsIntensity(c,m) Fireline intensity at
Fuel_AzimuthAny

BTU / ft fireline / sec D

Fuel_BulkDensity(c,m) Fuel bed bulk density lb fuel / cu ft fuel bed D

Fuel_Eccentricity(c,m) Fire ellipse eccentricity none D

Fuel_EffectiveWind(c,m) Effective wind speed ft / min D

Fuel_FlameLength(c,m) Flame length at Fuel_AzimuthAny feet D

Fuel_HeatPerUnitArea(c,m) Heat per unit area BTU/ sq ft fuel bed D

Fuel_LiveMextFactor(c,m) Live fuel extinction moisture content lb water / lb fuel D

Fuel_LwRatio(c,m) Fire ellipse length-to-width ratio none D

Fuel_PhiEffWind(c,m) Effective wind spread rate factor none D

Fuel_PhiSlope(c,m) Slope effect spread rate factor none D

Fuel_PhiWind(c,m) Wind effect spread rate factor none D

Fuel_ResidenceTime(c,m) Fire residence time minutes D

Fuel_RxIntensity(c,m) Fire reaction intensity BTU / sq ft fuel bed / min D

Fuel_ScorchHeight(c,m) Scorch height feet D

Fuel_Spread0(c,m) No-wind no-slope spread rate feet / min D

Fuel_SpreadAny(c,m) Spread rate at Fuel_AzimuthAny feet / min D

Fuel_SpreadMax(c,m) Spread rate at Fuel_AzimuthMax feet / min D

Fuel_WindLimit(c,m) 1 if wind exceeds effective limit [0..1] D

fireLib User Manual October 1996

Page 14

5. Functional Review

There are eight functions for creating, querying, and destroying fuel catalog, fuel
model, fuel particle, and flame length table objects, and four functions for determining fire
behavior for fuel models.

5.1 Creating and Destroying Fuel Catalogs

FuelCatalogPtr
Fire_FuelCatalogCreate (

char *name,
size_t maxModels)

Creates a fuel catalog instance and returns its handle. The new catalog has space for
fuel models numbered 0 through maxModels, but none are defined until subsequent calls
by Fire_FuelModelCreate(). The function returns NULL if unable to create the
catalog.

FuelCatalogPtr
Fire_FuelCatalogCreateStandard (

char *name,
size_t maxModels)

Creates a fuel catalog instance, defines the 13 standard fire behavior fuel models
(models 1-13) and a no-fuel model (model 0), and returns the new catalog’s handle.
Additional fuel models (14 - maxModels) may be defined using
Fire_FuelModelCreate(). The function returns NULL if unable to create the catalog.

int
Fire_FuelCatalogDestroy (FuelCatalogPtr catalog)

Destroys the specified fuel catalog and releases all memory allocated to the
catalog’s fuel models and fuel particles. The catalog handle is no longer valid. The function
returns FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on failure.

fireLib User Manual October 1996

Page 15

5.2 Creating and Destroying Fuel Models

int
Fire_FuelModelCreate (

FuelCatalogPtr catalog,
size_t modelNumber,
char *name,
char *desc,
double depth,
double mext,
double adjust,
size_t maxParticles)

Adds a new fuel modelNumber to catalog. If a fuel model with modelNumber
already exists in the catalog, it is first destroyed before the new one is created. While space
is set aside for up to maxParticle fuel particles, no particles are defined until subsequent
calls to Fire_FuelParticleAdd(). The function returns FIRE_STATUS_OK on
success or FIRE_STATUS_ERROR on failure.

int
Fire_FuelModelExists (

FuelCatalogPtr catalog,
size_t modelNumber)

This function returns 1 if fuel modelNumber is currently defined in catalog,
otherwise it returns 0.

int
Fire_FuelModelDestroy (

FuelCatalogPtr catalog,
size_t modelNumber)

Removes fuel modelNumber from catalog and releases all memory allocated to
the model and its fuel particles. The modelNumber may be re-used by a subsequent call to
Fire_FuelModelCreate(). The function returns FIRE_STATUS_OK on success or
FIRE_STATUS_ERROR on failure.

fireLib User Manual October 1996

Page 16

5.3 Creating Fuel Particles

int
Fire_FuelParticleAdd (

FuelCatalogPtr catalog,
size_t modelNumber,
size_t type,
double load,
double savr,
double dens,
double heat,
double stot,
double seff)

Adds a fuel particle to fuel modelNumber in catalog. Once added, the only way
to remove or redefine the fuel particle (except by destroying and redefining the entire fuel
model) is by using fuel particle property macros (see section 4). The function returns
FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on failure.

5.4 Creating and Destroying Flame Length Tables

int
Fire_FlameLengthTable (

FuelCatalogPtr catalog,
size_t flameClasses,
double flameStep)

Creates a flame length look-up table for catalog and returns FIRE_STATUS_OK on
success or FIRE_STATUS_ERROR on failure. If no table is defined for catalog,
Fire_SpreadAtAzimuth() and Fire_FlameScorch() calculate flame lengths using
the BEHAVE equations. In some simulations, these calculations may consume most of the
computation time, and using a look-up table is significantly faster.

This function creates a table with flameClasses categories (beginning at flame
length 0) of size flameStep feet. The table is then populated and automatically used in all
subsequent calls to Fire_SpreadAtAzimuth() and Fire_FlameScorch().

The flame length table may be redefined at any time by issuing another call to
Fire_FlameLengthTable() with new flameClasses and flameStep values. The
flame length table is destroyed by calling Fire_FlameLengthTable() with a 0 value for
fireClasses, after which all flame lengths are again calculated rather than looked up.

fireLib User Manual October 1996

Page 17

5.5 Calculating Fire Behavior

int
Fire_FuelCombustion (

FuelCatalogPtr catalog,
size_t modelNumber)

Calculates all intermediate fuel bed and combustion variables that are solely dependent
upon fuel bed characteristics (stage 1). It is normally not called directly by the user as it is
automatically called by Fire_SpreadNoWindNoSlope() whenever fuel modelNumber
has been defined or updated. The function returns FIRE_STATUS_OK on success or
FIRE_STATUS_ERROR on failure.

A large number of intermediate fuel and combustion variables are calculated and
stored by this function. The original BEHAVE System spends approximately 80% of its
computation time in the redundant calculation of these non-variant values. Isolating these
computations within a function which is called only once per fuel model dramatically
improves performance.

int
Fire_SpreadNoWindNoSlope (

FuelCatalogPtr catalog,
size_t modelNumber,
double moisture[FIRE_MCLASSES])

Calculates reaction intensity, heat per unit area, and no-wind no-slope fire spread rate
for fuel modelNumber. It automatically calls Fire_FuelCombustion() if needed for
modelNumber . The moisture[] array contains the current fuel moistures (fraction of
oven-dry weight) for four size classes of dead fuel (1-, 10-, 100-, and 1000-hour time lag) and
2 classes of live fuel (herbaceous and stem). The function returns FIRE_STATUS_OK on
success or FIRE_STATUS_ERROR on failure.

fireLib User Manual October 1996

Page 18

int
Fire_SpreadWindSlopeMax (

FuelCatalogPtr catalog,
size_t modelNumber,
double windFpm,
double windDeg,

 double slope,
 double aspect)

Calculates the maximum spread rate and direction of maximum spread given the wind
and terrain conditions. Once Fire_SpreadNoWindNoSlope() has been called to
establish initial conditions for this fuel modelNumber, Fire_SpreadWindSlopeMax()
may be called repeatedly with different input arguments to optimize simulation performance.
The function returns FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on failure.

int
Fire_SpreadAtAzimuth (

FuelCatalogPtr catalog,
size_t modelNumber,
double azimuth,
size_t whichOutputs)

Calculates spread rate along the requested compass azimuth for fuel
modelNumber, and optionally calculates Byram’s fireline intensity, flame length, and/or
scorch height along azimuth as requested by whichOutputs. Once
Fire_SpreadWindSlopeMax() has been called to establish initial conditions,
Fire_SpreadAtAzimuth() may be called repeatedly to get fire behavior at multiple
azimuths. The function returns FIRE_STATUS_OK on success or FIRE_STATUS_ERROR
on failure.

whichOutputs is specified by OR’ing together any of the following macro
constants: FIRE_NONE, FIRE_BYRAMS, FIRE_FLAME, and/or FIRE_SCORCH. If
FIRE_NONE is specified alone, only the spread rate is determined for the azimuth.
FIRE_NONE and FIRE_BYRAMS require little computation time. FIRE_FLAME adds a call
to the C pow() function (unless a flame length table is in use), and FIRE_SCORCH adds a
call to both pow() and sqrt(), and therefore exacts the greatest performance pendalty.

If a flame length table has been defined for catalog via a previous call to
Fire_FlameLengthTable(), it is used to look up the flame length. Otherwise, flame
lengths are calculated directly.

fireLib User Manual October 1996

Page 19

int
Fire_FlameScorch (

FuelCatalogPtr catalog,
size_t modelNumber,
size_t whichOutputs)

Calculates the flame length or scorch height along the azimuth established by the most
recent call to Fire_SpreadAtAzimuth(). It is provided for those cases where it is faster
to call Fire_SpreadAtAzimuth() with the FIRE_NONE option (perhaps to check all
points of the compass), then calculate the flame length and/or scorch height for a specific
azimuth. The function returns FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on
failure.

whichOutputs is specified by OR’ing together the macro constants FIRE_FLAME
and/or FIRE_SCORCH.

If a flame length table has been defined for catalog via a previous call to
Fire_FlameLengthTable(), it is used to look up the flame length. Otherwise, flame
lengths are calculated directly.

fireLib User Manual October 1996

Page 20

6. Example: A Simple Fire Growth Simulator

A simple but functional fire growth simulator is presented as an example application
using the fireLib API. The source code for this example resides in the file named
fireSim.c.

 Although the source listing is fairly short (about 200 lines of C code plus comments),
it is capable of simulating fire growth within a spatially variable fuel, slope, aspect, wind
speed, wind direction, and fuel moisture complex. It reads an ignition time map that may be
seeded with any number of pre-planned ignitions in any shape and at any time or set of
staggered times. The ignition map is modified as part of the simulation, and upon completion
may be saved along with a flame length map to a GRASS format ASCII map file.

While the example simulation creates fuel, slope, aspect, and environmental conditions
that are spatially constant, it is easily modified to create variable fuels, fuel breaks, variable
weather, and multiple and time-staggered ignition points to acheive interesting effects. The
figures below were generated by changing just a few source lines to acheive interesting
effects.

The example remains simplistic, however, in that is does not allow temporal variability
in wind speed, wind direction, or fuel moisture content; this is left as an exercise for the
reader (I’ve always wanted to say that!).

Perhaps the best use of the example is to illustrate some common problems with cell-
based contagious growth algorithms. The example simulation uses a simple 8-neighbor
cell contagion algorithm for fire spread. These type of algorithms produce notoriously
distorted fire perimeters whenever the direction of maximum spread approaches, but is not
aligned with, a major neighbor vector (see French 1992 for a more thorough discussion).

Figure 1 maps the fire ignition times from a single ignition point in uniform fuel and
environmental conditions without any slope or wind effect. It was created by changing wind
speed to 0 (at fireSim.c line 42) and centering the ignition point (line 125). The
octogonal shape is characteristic of the 8-neighbor contagion algorithm, and illustrates the
amount of distortion from the expected circular perimeter.

Adding a 4 miles/hour windspeed (figure 2) shows how increasing spread rate produce
fire shapes that do not resemble the expected elliptical geometry. It was generated by the
source code listing in fireSim.c.

In figure 3 the wind direction was changed from 0 to 8 degrees east of north (line 43).
This figure illustrates how a small deviation from an octogonal axis exaserbates the geometric
distortion.

fireLib User Manual October 1996

Page 21

Figure 4 illustrates the ignition pattern resulting from two simultaneous ignition points.
This was acheived by changing line 125 and inserting two new statements after line 26:

125 cell = Cols/3 + Cols*(Rows/4);
126a cell = 2*Cols/3 + Cols*(Rows/4);
126b ignMap[cell] = 1.0;

In figure 5 the two initial ignitions points by are staggered by100 minutes by changing
line 126b:

126b ignMap[cell] = 100.0;

In figure 6 the fire burns around a fuel break spanning the middle 80% of the fuel
array’s central meridian. The fuel break was created by inserting the following statements
after line 122:

122a
122b for (cell=Cols*(Rows/2)+Cols/10, col=Cols/10;

col<Cols-Cols-10; col++, cell++)
122c fuelMap[cell] = 0;

The burning pattern in an array of randomly assigned fuels is shown in figure 7. This
effect was accomplished by changing line 110:

110 fuelMap[cell] = rand()%14;

fireLib User Manual October 1996

Page 22

7. Validation and Performance

The fireLib outputs were compared with BEHAVE outputs over a wide range of input
variables and were found to be in agreement within 1 part in 10000.

The example fire growth simulator listed in Appendix A was used to test fireLib
performance on a variety of computer-operating system-compiler configurations.

Performance of fireLib Simulation Example

Computer - Processor Operating System Compiler (options) Seconds

Intel Pentium 100 UnixWare (SVR4) UnixWare C (-g) 17

UnixWare C (-O) 16

Sun SparcStation2 (sparc 4c) Sun OS 4.1.4 acc (-g) 92

acc (-O) 72

IBM RS6000 Power PC 601 AIX 3.5 cc (-g) 23

cc (-O) 16

fireLib User Manual October 1996

Page 23

8. Availability and Licensing

8.1 Distribution

The fireLib distribution may be obtained by downloading the SEM home page at
www.montana.com/sem or by FTP from ftp.montana.com/sem. Included in the distribution
are:

CHANGES documents any changes in fireLib distribution
fireLib.c fireLib source code file
fireLib.h fireLib header file
fireLib.ps fireLib manual in Postscript (tm) format
fireSim.c the example fire simulator source code
license.txt fireLib license terms
makefile make file to create the exdample fireSim program
README latest information on fireLib installation and updates

Each version of the fireLib distribution is compressed into a single file and labeled
with the version number. You have a choice of three compression schemes when
downloading the distribution; gzipped tar Unix text or zipped DOS text. For example, firelib-
1.0.0.tar.gz and firelib-1.0.0.zip both contain the initial distribution. The first version
featuring bug fixes will appear as firelib-1.0.1.tar.gz and firelib-1.0.1.zip. The first version
featuring new capabilities will appear as firelib-1.1.0.tar.gz and firelib-1.1.0.zip.

8.2 Bugs

Send bug reports to cbevins@montana.com. Please send a working example of the
code that causes the error; I can only fix the error if I am able to duplicate it.

8.3 Licensing

The fireLib library is copyrighted © by Collin D. Bevins. The file license.txt
contains the entire license agreement, and is reproduced below:

Collin D. Bevins
Systems for Environmental Management
315 South Fourth East
P.O. Box 8868
Missoula, MT 59807
cbevins@montana.com
(406) 549-7478 or (406) 728-7130

fireLib User Manual October 1996

Page 24

This software (hereafter, Software) is copyrighted by Collin D. Bevins (hereafter, Grantor) and other parties.
The following terms apply to all files associated with the software, including but not limited to source, binary,
documentation, and data files, unless explicitly disclaimed in individual files.

The Grantor hereby grants you (hereafter, Licensee) a license to use the Software for academic, research, and
internal business purposes only, without a fee. Licensee may distribute the Software to third parties provided
that the copyright notice and this statement appears verbatim on all copies and that no charge is associated with
such copies.

Licensee may make derivative works. However, if Licensee distributes any derivative work based on or derived
from the Software, then the Licensee will (1) notify the Grantor regarding its distribution of the derivative work,
and (2) clearly notify users that such derivative work is a modified version and not the original Software
distributed by the Grantor.

Any Licensee wishing to make commercial use of the Software should contact the Grantor to negotiate an
appropriate license for such commercial use. Commercial use includes (1) integration of all or part of the source
code into a product for sale or license by or on behalf of the Licensee to third parties, or (2) distribution of the
binary or source code to third parties that need it to utilize a commercial product sold or licensed by or on behalf
of the Licensee.

IN NO EVENT SHALL THE GRANTOR, AUTHORS, OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE GRANTOR, AUTHORS, OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE GRANTOR, AUTHORS, AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN
“AS IS” BASIS, AND THE GRANTOR, AUTHORS, AND DISTRIBUTORS HAVE NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

IT IS THE LICENSEE’S RESPONSIBILITY TO ASSURE THAT THIS SOFTWARE AND
DOCUMENTATION IS ADEQUATE FOR THE USER’S PURPOSE, AND IS USED IN A SAFE AND
RESPONSIBLE MANNER.

By using or copying this Software, the Licensee agree to abide by the copyright law and all other applicable
laws of the U.S. including, but not limited to, export control laws, and the terms of this license. The Grantor
shall have the right to terminate this license immediately by written notice upon Licensee’s breach of, or non-
compliance with, any of its terms. Licensee may be held legally responsible for any copyright infringement that
is caused or encouraged by Licensee’s failure to abide by the terms of this license.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

fireLib User Manual October 1996

Page 25

9. Selected References

Albini, Frank A. Estimating wildland fire behavior and effects. General Technical Report INT-30.
Ogden,UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range
Experiment Station; 1976a. 92 p.

Albini, Frank A. Computer based models of wildland fire behavior: a user’s manual. Ogden,UT: U.S.
Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment
Station; 1976b. 68 p.

Anderson, Hal E. Predicting wind-driven wildland fire size and shape. Research Paper INT-305.
Ogden,UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range
Experiment Station; 1983. 26 p.

Andrews, Patricia L. BEHAVE: fire behavior prediction and fuel modeling system - BURN
Subsystem, part 1. General Technical Report INT-194. Ogden, UT: U.S. Department of
Agriculture, Forest Service, Intermountain Research Station; 1986. 130 p.

Finney, Mark A. Modeling the spread and behavior of prescribed natural fires. In Proceedings of the
12th Conference on Fire and Forest Meteorology: 138-14; 1994.

.
Finney, Mark A. And Patricia L. Andrews The FARSITE fire area simulator: fire management

applications and lessons of summer 1994. Interior West Fire Council Meeting and
Symposium; Coeur d’Alene, ID; 1994.

French, Ian A. Visualisation techniques for the computer simulation of bushfires in two dimensions.
M.S. Thesis, University of New South Wales, Australian Defense Force Academy; 1992.

Kourtz, Peter S and W. G. O”Reagan. A model for a small forest fire to simulate burned and burning
area for use in a detection model. Forestry Science 17(2): 163-169.

Richards, G. D. An elliptical growth model of forest fire fronts and its numerical solution. Int. J.
Numer. Meth. Eng. 30: 1163-1179; 1990.

Rothermel, Richard C. A mathematical model for predicting fire spread in wildland fuels. Research
Paper INT-115. Ogden,UT: U.S. Department of Agriculture, Forest Service, Intermountain
Forest and Range Experiment Station; 1972. 40 p.

Rothermel, Richard C. How to predict the spread and intensity of forets and range fires. General
Technical Report INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Research Station; 1983. 161 p.

Rothermel, Richard C. Predicting behavior and size of crown fires in the northern Rocky Mountains.
Research Paper INT-438. Ogden,UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station; 1991.

fireLib User Manual October 1996

Page 26

10. Function Reference

This section contains the technical reference to all fireLib functions. Each reference
includes the following information:

Signature:

The ANSI standard C function declaration and required header files.

Arguments:

A description of each function argument and, when appropriate, its units of measure.

Returns:

The function return type and return codes.

Description:

A narrative of the function’s purpose and operation.

Side Effects:

Lists all objects that are created or destroyed and all object properties that are updated.

Error Messages:

Lists error messages that may appear in the FuelCat_Error property if the function
returns an error condition.

See Also:

Lists related functions.

fireLib User Manual October 1996

Page 27

Fire_FlameLengthTable()
Signature:

#include <fireLib.h>
int Fire_FlameLengthTable (

FuelCatalogPtr catalog,
size_t flameClasses,
double flameStep)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

flameClasses Number of classes within the table or 0 to delete an existing
table.

flameStep Size of each flame class in feet. The first flame class covers
zero through flameStep feet.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_FlameLengthTable() creates a flame length look up table for catalog.
In the absence of this table, Fire_SpreadAtAzimuth() and
Fire_FlameScorch() calculate flame lengths using the BEHAVE equations,
which use the pow() function and can consume most of the computation time in
some applications. Defining a flame length table may improve performance by forcing
these functions to look up rather than calculate flame length.

The flame length table is redefined by calls to Fire_FlameLengthTable() using
new values for flameClasses and flameStep. Any existing flame length table
is destroyed by calling this function with a flameClasses value of zero, after
which all flame lengths are again calculated.

Side Effects:
Any existing flame length table is destroyed.
FuelCat_FlameArray(c) property is set to NULL.
FuelCat_FlameClasses(c) and FuelCat_FlameStep(c) properties set to
zero.
If flameClasses is zero, returns FIRE_STATUS_OK.
Allocates a new flame length table pointed to by FuelCat_FlameArray(c)

property.
FuelCat_FlameClasses(c) property set to flameClasses.

fireLib User Manual October 1996

Page 28

FuelCat_FlameStep(c) property set to flameStep.

Error Messages:
Fire_FlameLengthTable(): unable to allocate flame length table with

<flameClasses> classes of <flameStep> feet.

Examples:
To create a flame length table with 200 1-foot flame length classes:

Fire_FlameLengthTable(catalog, 200, 1.0);

To destroy the above table and create a new table with 500 6-inch classes ranging
from 0.5 through 250 feet:

Fire_FlameLengthTable(catalog, 500, 0.5);

To destroy any existing flame length table and force direct calculation of flame
lengths:

Fire_FlameLengthTable(catalog, 0, 0.);

See Also:
Fire_SpreadAtAzimuth(), Fire_FlameScorch().

fireLib User Manual October 1996

Page 29

Fire_FlameScorch()
Signature:

#include <fireLib.h>
int Fire_FlameScorch (

FuelCatalogPtr catalog,
size_t modelNumber,
size_t whichOutputs)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

whichOutputs Flag indicating which fire behavior outputs to calculate. Specify
this argument by OR’ing together FIRE_FLAME and/or
FIRE_SCORCH.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_FlameScorch() determines the flame length and/or scorch height along the
azimuth established by the most recent call to Fire_SpreadAtAzimuth(). It is
provided for those cases where it is faster to call Fire_SpreadAtAzimuth()
without flame length or scorch height computations, and then later ask for these
values.

If a flame length table has been defined for catalog via a previous call to
Fire_FlameLengthTable(), it is used to look up the flame length. Otherwise,
flame lengths are calculated directly.

Side Effects:
Fuel_FlameLength(c,m) updated if whichOutputs includes FIRE_FLAME.
Fuel_ScorchHeight(c,m) updated if whichOutputs includes FIRE_SCORCH.

Error Messages:
Fire_FlameScorch(): fuel model <modelNumber> doesn’t exist in fuel catalog

<catalogName>.

See Also:
Fire_FlameLengthTable().

fireLib User Manual October 1996

Page 30

Fire_FuelCatalogCreate()
Signature:

#include <fireLib.h>
FuelCatalogPtr Fire_FuelCatalogCreate (

char *catalogName,
size_t maxModels)

Arguments:
catalogName A unique name assigned to this fuel catalog.

maxModels Maximum fuel model number allowed in this catalog.

Returns:
Returns a non-NULL handle (FuelCatalogPtr) on success, NULL on failure.

Description:
Fire_FuelCatalogCreate() creates a new fuel catalog object capable of
holding maxModels+1 fuel models (e.g., fuel models numbered 0 through
maxModels). The fuel catalog contains no fuel models until they are defined by
subsequent calls to Fire_FuelModelCreate().

Side Effects:
Allocates a new fuel catalog object referenced by the returned catalog handle.
FuelCat_MagicCookie(c) property initialized.
FuelCat_Name(c) property set to catalogName.
FuelCat_MaxModels(c) property set to maxModels+1.
Allocates a catalog error buffer pointed to by FuelCat_Error(c) property.
Allocates an array of fuel model object pointers pointed to by

FuelCat_ModelArray(c) property.
FuelCat_FlameArray(c) property set to NULL.
FuelCat_FlameClasses(c)property initialized to zero.
FuelCat_FlameStep(c) property initialized to zero.
FuelCat_Status(c) property initialized to zero.

fireLib User Manual October 1996

Page 31

Error Messages:
All error messages are printed to stderr. Since a NULL return indicates that the fuel
catalog object was not created, there is no error buffer for the catalog.

Fire_FuelCatalogCreate(): unable to allocate fuel catalog <catalogName> object.

Fire_FuelCatalogCreate(): unable toduplicate fuel catalog <catalogName> name.

Fire_FuelCatalogCreate(): unable to allocate fuel catalog <catalogName> error
buffer.

Fire_FuelCatalogCreate(): unable to allocate fuel catalog <catalogName> with
<maxModels> fuel models.

See Also:
Fire_FuelCatalogCreateStandard(), Fire_FuelModelCreate(),
Fire_FuelCatalogDestroy().

fireLib User Manual October 1996

Page 32

Fire_FuelCatalogCreateStandard()
Signature:

#include <fireLib.h>
FuelCatalogPtr Fire_FuelCatalogCreateStandard (

char *catalogName,
size_t maxModels)

Arguments:
catalogName A unique name assigned to this fuel catalog.

maxModels Maximum fuel model number allowed in this catalog.

Returns:
Returns a non-NULL handle (FuelCatalogPtr) on success, NULL on failure.

Description:
Fire_FuelCatalogCreateStandard() creates a new fuel catalog object
capable of holding maxModels+1 fuel models (e.g., fuel models numbered 0 through
maxModels). If maxModels is less than 13, then space is allocated only for fuel
models 0-13.

Fuel models 0-13 are then defined within the catalog. Fuel model 0 is a no-fuel
model, while models 1-13 are the standard fire behavior models (Andrews 1976).
Additional fuel models may be defined by subsequent calls to
Fire_FuelModelCreate().

Side Effects:
Produces the same side effects as the Fire_FuelCatalogCreate() function.
Fuel model 0 is defined as a fuel model with no fuel particles.
Fuel models 1-13 are defined for the NFFL (FMO) fire behavior models.

Error Messages:
All error messages are printed to stderr. Since a NULL return indicates that the fuel
catalog object was not created, there is no error buffer for the catalog. May print error
messages generated from within the Fire_FuelCatalogCreate(),
Fire_FuelModelCreate(), or Fire_FuelParticleAdd() functions.

See Also:
Fire_FuelCatalogCreate(), Fire_FuelCatalogDestroy(),
Fire_FuelModelCreate().

fireLib User Manual October 1996

Page 33

Fire_FuelCatalogDestroy()
Signature:

#include <fireLib.h>
int Fire_FuelCatalogDestroy (

FuelCatalogPtr catalog)

Arguments:
catalog Fuel catalog handle returned by Fire_FuelCatalogCreate() or

Fire_FuelCatalogCreateStandard().

Returns:
Returns FIRE_STATUS_OK.

Description:
Fire_FuelCatalogDestroy() releases all memory allocated to the catalog,
including its fuel models and fuel particles. The catalog handle is no longer valid.

Side Effects:
All fuel particle resources are released.
All fuel model resources are released.
All fuel catalog resources are released.

Error Messages:
None.

See Also:
Fire_FuelCatalogCreate(), Fire_FuelCatalogCreateStandard().

fireLib User Manual October 1996

Page 34

Fire_FuelCombustion()
Signature:

#include <fireLib.h>
int Fire_FuelCombustion (

FuelCatalogPtr catalog,
size_t modelNumber)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_FuelCombustion() calculates all the intermediate fuel bed and combustion
variables that are solely dependent upon fuel bed characteristics. It is not normally
called directly by the user, but rather by Fire_SpreadNoWindNoSlope() when
the latter has detected a change in any fuel properties of fuel modelNumber.

Side Effects:
Calculates the following fuel bed and intermediate properties for modelNumber;
Fuel_AreaWtg(c,m,p)

Fuel_SizeAreaWtg(c,m,p)
Fuel_Moisture(c,m,p)
Fuel_LifeAreaWtg(c,m,l)
Fuel_LifeRxFactor(c,m,l)
Fuel_BulkDensity(c,m)
Fuel_ResidenceTime(c,m)
Fuel_BulkDensity(c,m)
Fuel_PropFlux(c,m)
Fuel_SlopeK(c,m)
Fuel_WindB(c,m)
Fuel_WindK(c,m)
Fuel_WindE(c,m)
Fuel_FineDead(c,m)
Fuel_LiveMextFactor(c,m).

fireLib User Manual October 1996

Page 35

Initializes the following fire behavior properties for modelNumber to zero; Fuel_
Sprea
d0(c,
m)

Fuel_RxIntensity(c,m)
Fuel_HeatPerUnitArea(c,m)
Fuel_SpreadMax(c,m)
Fuel_AzimuthMax(c,m)
Fuel_EffectiveWind(c,m)
Fuel_PhiSlope(c,m)
Fuel_PhiWind(c,m)
Fuel_PhiEffWind(c,m)
Fuel_Eccentricity(c,m)
Fuel_WindLimit(c,m)
Fuel_SpreadAny(c,m)
Fuel_AzimuthAny(c,m)
Fuel_ByramsIntensity(c,m)
Fuel_FlameLength(c,m)
Fuel_ScorchHeight(c,m).

Fuel_LwRatio(c,m) property initialized to 1.

Initializes the following environmental variables to zero;
Fuel_WindSpeed(c,m)
Fuel_WindDir(c,m)
Fuel_Slope(c,m)
Fuel_Aspect(c,m)
Fuel_EnvMoisture(c,m,x).

Fuel_CombustionFlag(c,m) property set to 1.

Error Messages:
Fire_FuelCombustion(): fuel mode <modelNumber> doesn’t exist in fuel catalog

<catalogName>.

See Also:
Fire_FuelModelCreate().

fireLib User Manual October 1996

Page 36

Fire_FuelModelCreate()
Signature:

#include <fireLib.h>
int Fire_FuelModelCreate (

FuelCatalogPtr catalog,
size_t modelNumber,
char *modelName,
char *desc,
double depth,
double mext,
double adjust,
size_t maxParticles)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number; must be less than or equal to the maximum
number of fuel models allowed in catalog.

modelName A short name for this fuel model (or NULL).

desc A description for this fuel model (or NULL).

depth Fuel bed depth (feet).

mext Dead fuel extinction moisture content (lb water per lb fuel).

adjust Spread rate adjustment factor (not used).

maxParticles Maximum number of fuel particles that may be defined for this
fuel model.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_FuelModelCreate() creates a new fuel model within catalog. If a fuel
model already exists with this modelNumber, it is first destroyed before the new one
is created, and no error message is generated. The fuel model contains no fuel
particles until subsequent calls to Fire_FuelParticleAdd().

Side Effects:

fireLib User Manual October 1996

Page 37

Allocates a new fuel model object referenced by catalog and modelNumber and
pointed to by FuelCat_ModelPtr(c,m) property.

Fuel_Model(c,m) property set to modelNumber.
Fuel_Depth(c,m) property set to depth.
Fuel_Mext(c,m) property set to mext.
Fuel_SpreadAdjustment(c,m) property set to adjust.
Fuel_Name(c,m) property points to modelName buffer.
Fuel_Desc(c,m) property points to desc buffer.
Allocates an array of fuel particle object pointers pointed to by the

Fuel_ParticleArray(c,m) property.
Fuel_MaxParticles(c,m) property set to maxParticles.
Initializes all Fuel_ParticlePtr(c,m,p) properties to NULL.
Fuel_CombustionFlag(c,m) set to 0.

Error Messages:
Fire_FuelModelCreate(): fuel model <modelName> number <modelNumber>

exceeds fuel catalog <catalogName> range [0..<maxModels>].

Fire_FuelModelCreate(): fuel model <modelName> number <modelNumber>
depth <depth> is too small.

Fire_FuelModelCreate(): fuel model <modelName> number <modelNumber>
extinction moisture <mext> is too small.

Fire_FuelModelCreate(): unable to allocate fuel model <modelName> number
<modelNumber> for fuel catalog <catalogName>.

See Also:
Fire_FuelModelExists(), Fire_FuelParticleAdd(),
Fire_FuelModelDestroy().

fireLib User Manual October 1996

Page 38

Fire_FuelModelDestroy()
Signature:

#include <fireLib.h>
int Fire_FuelModelDestroy (

FuelCatalogPtr catalog,
size_t modelNumber)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_FuelModelDestroy() removes fuel modelNumber from catalog and
releases all its resources including all its fuel particle resources.

Side Effects:
Releases all fuel particle resources for the modelNumber.
Releases all fuel model resources for the modelNumber.
FuelCat_ModelPtr(c,m) property for modelNumber set to NULL.

Error Messages:
Fire_FuelModelDestroy(): fuel model number <modelNumber> doesn’t exist in fuel

catalog <catalogName>.

See Also:
Fire_FuelModelCreate(), Fire_FuelModelExists().

fireLib User Manual October 1996

Page 39

Fire_FuelModelExists()
Signature:

#include <fireLib.h>
int Fire_FuelModelExists (

FuelCatalogPtr catalog,
size_t modelNumber)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

Returns:
1 if modelNumber exists in catalog, 0 if it does not exist.

Description:
Fire_FuelModelExist() reports whether or not a fuel model object currently
exists referenced by catalog and modelNumber. Fuel model objects are created
by Fire_FuelModelCreate() and destroyed by Fire_FuelModelDestroy().

Side Effects:
None.

Error Messages:
None.

See Also:
Fire_FuelModelCreate(), Fire_FuelModelDestroy().

fireLib User Manual October 1996

Page 40

Fire_FuelParticleAdd()
Signature:

#include <fireLib.h>
int Fire_FuelParticleAdd (

FuelCatalogPtr catalog,
size_t modelNumber,
size_t type,
double load,
double savr,
double dens,
double heat,
double stot,
double seff)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

type Fuel particle type, must be one of the predefined macro
constants FIRE_TYPE_DEAD, FIRE_TYPE_HERB, or
FIRE_TYPE_WOOD.

load Fuel particle load (pounds per square foot of fuel bed).

savr Surface area-to-volume ratio (square feet of fuel particle surface
area per cubic feet of fuel particle volume).

dens Particle density (pounds of fuel particle per cubic feet of fuel
particle).

heat Low heat of combustion (BTU per pound of fuel particle).

stot Total silica content (pounds of silica per pound of fuel particle).

seff Effective silica content (pounds of silica per pound of fuel
particle).

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

fireLib User Manual October 1996

Page 41

Description:
Fire_FuelParticleAdd() creates a new fuel particle object and adds it to
modelNumber in cataolg. The number of fuel particles a fuel model may contain
is defined by the maxParticles argument to Fire_FuelModelCreate(). Each
particle is assigned an index number as it is added to the fuel model; the first particle
has index 0, the second has index 1, and so forth.

Side Effects:
Allocates a new fuel particle object pointed to by Fuel_ParticlePtr(c,m,p)

property.
Fuel_Type(c,m,p) property set to type.
Fuel_Load(c,m,p) property set to load.
Fuel_Savr(c,m,p) property set to savr.
Fuel_Dens(c,m,p) property set to dens.
Fuel_Heat(c,m,p) property set to heat.
Fuel_SiTotal(c,m,p) property set to stot.
Fuel_SiEffective(c,m,p) property set to seff.
Fuel_Live(c,m,p) property set to FIRE_LIFE_DEAD or FIRE_LIFE_LIVE.
Fuel_SurfaceArea(c,m,p) property is calculated.
Fuel_SigmaFactor(c,m,p) property is calculated.
Fuel_SizeClass(c,m,p) property is calculated.
Fuel_AreaWtg(c,m,p) property is set to zero.
Fuel_SizeAreaWtg(c,m,p) property is set to zero.
Fuel_Moisture(c,m,p) property is set to zero.
Fuel_Particles(c,m) property is incremented.
Fuel_CombustionFlag(c,m) property set to zero.
FuelCat_Status(c) property is updated.

Error Messages:
Fire_FuelParticleAdd(): fuel model number <modelNumber> doesn’t exist in fuel

catalog <catalogName>.

Fire_FuelParticleAdd(): fuel model <modelNumber> type value (arg #3) is not
FIRE_TYPE_DEAD, FIRE_TYPE_HERB, or FIRE_TYPE_WOOD.

Fire_FuelParticleAdd(): unable to allocate fuel particle to fuel model
<modelNumber> in fuel catalog <catalogName>.

See Also:
Fire_FuelModelCreate(), Fire_FuelModelDestroy().

fireLib User Manual October 1996

Page 42

Fire_SpreadAtAzimuth()
Signature:

#include <fireLib.h>
int Fire_FireSpreadAtAzimuth (

FuelCatalogPtr catalog,
size_t modelNumber,
double azimuth,
size_t whichOutputs)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

azimuth Compass azimuth for which spread rate and other fire behavior
calculation is requested (degrees clockwise from north).

whichOutputs Flag indicating which fire behavior outputs should be calculated.
May be the macro constant FIRE_NONE or the OR’d values of
FIRE_BYRAMS, FIRE_FLAME, and/or FIRE_SCORCH. The
spread rate at azimuth is always calculated regardless of the
value of whichOutputs.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_SpreadAtAzimuth() calculates the fire spread rate in the specified compass
azimuth. It optionally calculates Byram’s fireline intensity, flame length, and/or
scorch height, depending upon the value of whichOutputs.

This function depends upon fuel model state conditions established by the most recent
calls to Fire_SpreadNoWindNoSlope() and
Fire_SpreadWindSlopeMax().

fireLib User Manual October 1996

Page 43

Side Effects:
Fuel_AzimuthAny(c,m) property set to azimuth.
Fuel_SpreadAny(c,m) property is calculated.
Fuel_ByramsIntensity(c,m) property is calculated if whichOutputs

includes the macro constant FIRE_BYRAMS.
Fuel_FlameLength(c,m) property is calculated if whichOutputs includes the

macro constant FIRE_FLAME.
Fuel_ScorchHeight(c,m) property is calculated if whichOutputs includes the macro

constant FIRE_SCORCH.
FuelCat_Status(c) property is updated.

Error Messages:
Fire_FireSpreadAtAzimuth(): fuel model number <modelNumber> doesn’t exist in

fuel catalog <catalogName>.

See Also:
Fire_SpreadNoWindNoSlope(), Fire_SpreadWindSlopeMax(),
Fire_FlameScorch().

fireLib User Manual October 1996

Page 44

Fire_SpreadNoWindNoSlope()
Signature:

#include <fireLib.h>
int Fire_SpreadNoWindNoSlope (

FuelCatalogPtr catalog,
size_t modelNumber,
double moisture[FIRE_MCLASSES])

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

moisture Array of FIRE_MCLASSES (6) fuel moisture contents (lbs water
per lb of fuel). The array elements are referenced using the
macro constants FIRE_MCLASS_1HR, FIRE_MCLASS_10HR,
FIRE_MCLASS_100HR, FIRE_MCLASS_1000HR,
FIRE_MCLASS_HERB, and FIRE_MCLASS_WOOD.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_SpreadNoWindNoSlope() calculates the fire reaction intensity, heat per
unit area, and spread rate under no-slope and no-wind conditions. If the fuel bed or
fuel combustion characteristics have not been calculated for modelNumber, or if
modelNumber has had fuel particles added to it, this function first calls
Fire_FuelCombustion().

Side Effects:
Calls Fire_FuelCombustion() if Fuel_CombustionFlag(c,m) is zero.
Fuel_ByramsIntensity(c,m) property initialized to zero.
Fuel_FlameLength(c,m) property initialized to zero.
Fuel_ScorchHeight(c,m) property initialized to zero.
Fuel_EnvMoisture(c,m,x) property set to moisture[] contents.
Fuel_Moisture(c,m,p) properties are set to moisture[] contents.
Fuel_RxIntensity(c,m) property is calculated.
Fuel_HeatPerUnitArea(c,m) property is calculated.
Fuel_Spread0(c,m) property is calculated.
Fuel_SpreadMax(c,m) property initialized to Fuel_Spread0(c,m).
Fuel_AzimuthMax(c,m) property initialized to zero.
Fuel_SpreadAny(c,m) property initialized to Fuel_Spread0(c,m).

fireLib User Manual October 1996

Page 45

Fuel_AzimuthAny(c,m) property initialized to zero.
FuelCat_Status(c) property is updated.

Error Messages:
Fire_FireSpreadNoWindNoSlope(): fuel model number <modelNumber> doesn’t

exist in fuel catalog <catalogName>.

See Also:
Fire_SpreadAtAzimuth(), Fire_SpreadWindSlopeMax().

fireLib User Manual October 1996

Page 46

Fire_SpreadWindSlopeMax()
Signature:

#include <fireLib.h>
int Fire_SpreadWindSlopeMax (

FuelCatalogPtr catalog,
size_t modelNumber,
double windFpm,
double windDeg,
double slope,
double aspect)

Arguments:
catalog Fuel catalog handle returned by

Fire_FuelCatalogCreate()or
Fire_FuelCatalogCreateStandard().

modelNumber Fuel model number.

windFpm Wind speed in feet per minute.

windDeg Wind bearing or heading in degrees clockwise from north.

slope Terrain slope as fraction rise / reach.

aspect Terrain aspect (azimuth of downslope direction) in degrees
clockwise from north.

Returns:
FIRE_STATUS_OK on success, FIRE_STATUS_ERROR on failure.

Description:
Fire_SpreadWindSlopeMax() calculates the direction of maximum fire spread
and the spread rate in the maximum spread direction. The results depend upon initial
conditions established by the most recent call to Fire_SpreadNoWindNoSlope()
for modelNumber.

Side Effects:
Fuel_WindSpeed(c,m) property set to windFpm.
Fuel_WindDir(c,m) property set to windDeg.
Fuel_Slope(c,m) property set to slope.
Fuel_Aspect(c,m) property set to aspect.
Fuel_ByramsIntensity(c,m) property initialized to zero.
Fuel_FlameLength(c,m) property initialized to zero.
Fuel_ScorchHeight(c,m) property initialized to zero.
Fuel_PhiSlope(c,m) property is calculated.

fireLib User Manual October 1996

Page 47

Fuel_PhiWInd(c,m) property is calculated.
Fuel_PhiEffWind(c,m) property is calculated.
Fuel_EffectiveWind(c,m) property is calculated.
Fuel_WindLimit(c,m) property is calculated.
Fuel_LwRatio(c,m) property is calculated.
Fuel_Eccentricity(c,m) property is calculated.
Fuel_SpreadMax(c,m) property is calculated.
Fuel_AzimuthMax(c,m) property is calculated.
Fuel_SpreadAny(c,m) property initialized to Fuel_SpreadMax(c,m).
Fuel_AzimuthAny(c,m) property initialized to Fuel_AzimuthMax(c,m).
FuelCat_Status(c) property is updated.

Error Messages:
Fire_FireSpreadWindSlopeMax(): fuel model number <modelNumber> doesn’t exist

in fuel catalog <catalogName>.

See Also:
Fire_SpreadAtAzimuth(), Fire_SpreadNoWindNoSlope().

